Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We describe a method for laser-driven planar compression of crystalline hydrogen that starts with a sample of solid para-hydrogen (even-valued rotational quantum number j) having an entropy of 0.06 kB/molecule at 10 K and 2 atm, with Boltzmann constant kB. Starting with this low-entropy state, the sample is compressed using a small initial shock (<0.2 GPa), followed by a pressure ramp that approaches isentropic loading as the sample is taken to hundreds of GPa. Planar loading allows for quantitative compression measurements; the objective of our low-entropy compression is to keep the sample cold enough to characterize crystalline hydrogen toward the terapascal range.more » « less
-
Silica (SiO2) aerogel is widely used in high-energy-density shock experiments due to its low and adjustable density. Reported here are measurements of the shock velocity, optical radiance, and reflectivity of shocked SiO2 aerogel with initial densities of 0.1, 0.2, and 0.3 g/cm3. These results are compared with similar data from three solid polymorphs of SiO2, silica, quartz, and stishovite with initial densities 2.2, 2.65, and 4.3 g/cm3, respectively. Interestingly, below a brightness temperature of Tbright≈35,000 K, the slope of the radiance vs shock velocity is the same for each of the SiO2 aerogels and solid polymorphs. At Tbright≈35000 K, there is an abrupt change in the radiance vs shock velocity slope for aerogels, but not seen in the solid polymorphs over the pressures and temperatures explored here. An empirical model of shock front radiance as a function of SiO2 density and laser drive parameters is reported to aid in the design of experiments requiring maximum shock front radiance.more » « less
An official website of the United States government
